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ROLLING UP: MODELING 
and FINETUNING  
OVERHEAD DOORS

full heat in the winter, but rather is often heated to a 
minimum operating range of between 10ºC and 18ºC. 
With the overhead doors being open periodically 
(particularly when cross-ventilation occurs from 
the doors at each end of the garage being open 
simultaneously), heat loss and temperature drops 
are bound to occur consistently during the heating 
season. Because of this, reducing the minimum 
design air temperature in the model is an appropriate 
measure. However, because recently running vehicles 
are consistently entering the facility and giving off 
heat, some of this heat loss was assumed to be 

Passive House (PH) certification is increasingly 
being sought and designed for in diverse non-res-
idential building types, giving rise to specific com-

plexities that don’t commonly crop up in a standard 
single-family or multi-unit residential building. One 
such building type is the garage, which for a residential 
project would usually be modeled outside of the ther-
mal envelope but can be an integral component of an 
office building, manufacturing facility, or other indus-
trial facility. Garages’ challenges stem mainly from the 
need for large overhead doors, which are a source of 
significant heat loss and air leakage. These losses pose 
a challenge for PH certification, as the stringent crite-
ria for a heat demand of 15 kWh/m2 and an airtightness 
of 0.6 ACH50 still need to be met.

DESIGN
The design of the York Region Southeast District 
Maintenance Yard and Snow Management Facility in 
Markham, Ontario brought these exact complexities to 
IBI Group and Pretium Engineering, who were tasked 
with the design and Passive House certification of this 
building. The facility consists of an office connected 
to an industrial garage containing three bays—two 
vehicle bays and one wash bay—that are integral to 
the functionality and operations of the building (see 
Figure 1). Each of the bays needs to operate as a drive-
through, requiring a total of six garage doors, two for 
each bay.

 While carrying out the initial research to get this 
building to meet PH targets, the design team came up 
against a significant hurdle: there were no PH-certified 
overhead doors that were available on the market. This 
gap prompted a customized approach to the design, 
modeling, and detailing of this assembly. Several 
design assumptions, as well as calculation methods, 
had to be employed and verified to ensure reliable data 
could be input for the garage into the PHPP model. 

INTERIOR ENVIRONMENT
The first decision, which heavily impacted the 
modeling outcome, revolved around establishing 
the realistic internal air temperature in the garage. 
Because of how the space is used—active snow 
ploughs and drivers in full winter gear coming into the 
space, completing their tasks, and leaving at irregular 
intervals—this type of facility does not typically require 
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recovered, keeping the garage always above 10°C and, 
therefore, certifiable. The garage and office buildings 
were modeled separately in the PHPP to allow for 
these variations.

With this decision in mind, and an appropriate 
Passive House building envelope specified to surround 
the garage, the main component of interest was now 
the garage door. After much research, the design 
team found a workable option for this project, the 
Thermostop Sentinel Overhead Door.

THERMAL PERFORMANCE CRITERIA
The first challenge in finding suitable garage doors 
was identifying ones with sufficient insulation values. 
Several door manufacturers and door types (overhead 
and folding) were reviewed before landing on the 
Thermostop Sentinel doors, which provide an option 
that includes 100mm of polyurethane foam core 
insulation between steel panels. With this configuration 
the doors achieve a nominal thermal performance of 
approximately R-32. 

The Thermostop doors also include an option 
for adding 600mm x 300mm (24 inch x12 inch) 
double-glazed fixed windows with a thermally broken 
aluminum frame, providing a thermal resistance of R-5. 
As the doors would be taking up most of the wall area 
on the north and south elevations of this part of the 
project, the option of placing windows within the door 
assemblies was very beneficial. 

To appropriately model these doors in the PHPP, the 
basic door assembly was created in the U-Values tab, 
and the glazing and window frame components were 
input into the Components tab in accordance with the 
performance values provided by the manufacturer. 

To optimize solar heat gains and minimize heat 
losses, while providing adequate daylighting into the 
garage area, the design decision was made to include 
four windows on each door along the north elevation 
and twelve windows, consisting of three rows of four, 
on each door along the south elevation (see Figures 2, 
3, and 4). 

THERMAL BRIDGING
The thermal bridging limitations of garage doors 
are difficult to overcome in Passive House projects, 
particularly in industrial applications, where heavy 
vehicles are expected to enter the garage multiple 
times a day. In the case of this project, steel sills were 
necessary at the door thresholds for durability. Thermal 
breaks were installed right at the outside edge of the 
door threshold to minimize thermal bridging. However, 
based on thermal modeling, the Psi-values were still 
found to be the highest at this location.

The detail at the overhead door sill was modeled 
using THERM to assess the impact of the steel 
threshold (see Figure 5). The thermal break material at 
the location of the door threshold stops a significant 
amount of thermal bridging (see Figures 6 and 7).

At the head of the overhead door, the greatest 
limitation was that the door had to be placed fully on 

Figure 2.

Figure 3.

Figures courtesy of IBI Group (left, top, and middle) and 
Pretium Engineering, Inc. (bottom)

Figure 4.
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the interior side of the wall to permit gliding upwards. 
This placement is not thermally optimal. However, 
insulation, weatherstripping, and a thermal break 
material are being installed at the exterior side of the 
sliding door to decrease the thermal bridge at this 
location (see Figures 8 and 9). Similar to the head, the 
jamb of the overhead door also relies on a thermal 
break and a weather seal at the location between the 
wall and overhead door to decrease thermal bridging. 
The resultant thermal bridging values (Psi-install) based 
on the modeling of the details at the sill, head, and 
jambs of the overhead door are shown in Table 1.

Although none of the door perimeters were able to 
achieve the Passive House recommended maximum 
of 0.04 W/mK, accounting for them ensured that other 
design decisions could be made to mitigate their impact 
on the building’s overall performance. 

One location, however, that was able to achieve 
excellent thermal bridging values was the installation 
of the windows within the garage doors. Due to 
pre-fabrication, the detail at these areas is optimally 
designed and consistent, with little margin for error in 
installation. As a result, the window installation Psi-
value was able to be minimized to 0.01 W/mK.

AIRTIGHTNESS
One of the difficulties of using local products in 
Passive House buildings in general is the disconnect 
between the testing standards that have to be met 
for local fabrication and for PHPP input. In this case, 
the garage doors were tested for airtightness by a 
third-party testing company to ASTM E-283 “Standard 
Test Method for Rate of Air Leakage Through Exterior 
Windows, Curtain Walls, and Doors”. The results of this 
testing were 0.061 cfm/ft2 at 27.7 Pa and 0.127 cfm/ft2 
at 75 Pa. 

To generate a conservative estimate of the effect 
of the doors on the overall airtightness of the garage, 
the leakage rate at 75 Pa was used. Based on the size 
and number of doors planned, the total leakage was 
calculated as approximately 230 cfm, which equates to 
roughly 25% of the total leakage allowed for the garage 
to achieve the PH requirement of 0.6 ACH50. This 
informed the airtightness allowance for the remaining 
sections of the building envelope, as they could now 
meet a maximum of 0.45 ACH50. 

The major component in these overhead doors 
providing adequate airtightness is the seal at the base, 
which is a double U-shaped, flexible PVC weather 
seal. The double seal provides a layer of protection, 
both thermally and from air leakage, while the flexible 
material allows for compression, which allows for more 

Figure 5. Table 1. OVERHEAD DOOR  
PSIINSTALL (W/mK)

Sill Head Jambs

0.344 0.185 0.185

Figure 6.

Figure 7.
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Table 1. OVERHEAD DOOR  
PSIINSTALL (W/mK)

Figures courtesy of IBI Group (top left) and Pretium Engineering, 
Inc. (middle and bottom left and above)

Figure 8.

Figure 9.

sealing while maintaining durability. The remaining 
perimeter of the doors has a 3-lip flexible PVC weather 
seal, allowing also for sufficient compression to prevent 
air flow and increase thermal resistance.

SUMMARY
In summary, garages, when they are a part of the 
thermal envelope, pose a unique challenge to Passive 
House certification, mostly due to the need for 
overhead garage doors. Although there are limitations 
to how the negative impact of garage doors can be 
mitigated, there are multiple models, calculations, and 
estimates that can be used to understand how the 
doors impact the building envelope. As a result, design 
decisions for the remainder of the garage can be 
made with these impacts in mind, allowing the garage, 
and building, to successfully achieve Passive House 
certification. Our hope is that the lessons learned from 
the design of the garage space in this case study will 
better enable Passive House designers in applying PH 
standards and principles to industrial space types.

—Anna Dziurdzik and Jennifer Hogan  
are Certified Passive House Consultants  

at Pretium Engineering Inc., Eric Czerniak is a 
professional engineer and associate director, and 
Anwar Ktecha is a senior architect at IBI Group.


